VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. IV-Semester Main & Backlog Examinations, July-2023 Numerical Methods, Probability and Statistics

(Common to Civil, EEE & Mech.)

Time: 3 hours

Max. Marks: 60

Note: Tables of Area under the normal curves, t-test, F-test & Chi-square test will be provided

Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	1	M	L	CO	PO
1.	Give the Newton's interpolation formula? Can we use it for spaced intervals?	unequally	2	2	1	1,2,12
2.	Find p for the following data if $f(0.2)$ is asked		2	2	1	1,2,12
	x 0 1 2 3 4 5 6 f(x) 176 185 194 203 212 220 229					
3.	Write a Euler's formula to solve ordinal differential equation of	first order.	2	1	2	1,2,12
4.	State Newton's backward interpolation formula for first an derivative at $x = x_0$	nd second	2	1	2	1,2,12
5.	Define discrete random variable. Give an example.		2	1	3	1,2,12
6.	Define continuous random variable. Give an example.		2	1	3	1,2,12
7.	Define the F-test formula and when to use it?		2	2	4	1,2,12
8.	Explain chi-square test.		2	1	4	1,2,12
9.	Explain the principle of least squares.		2	2	5	1,2,12
10.	Define positive and negative correlation.		2	1	5	1,2,12
11. a)	Find the solution of $x = 1925$ using Newton's backward I formula	Difference 2	4	3	1	1,2,12
	x 1891 1901 1911 1921 1931					
	y 46 66 81 93 101					
b)	Find the Solution of $x = 301$ using Lagrange's Interpolation for	mula 4	1	3	1	1,2,12
	x 300 304 305 307					
	y 2.4771 2.4829 2.4843 2.487					
12. a)	Solve $y' = x + y$, $y(0) = 1$ by Taylor's series method. Hence find to of y at $x = 0.1$ and $x = 0.2$	he values 4	1	3	2	1,2,12
b)	Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with initial condition $y = 1$ at $x = 0$; find y for x	a = 0.1 by 4	1	3	2	1,2,12
12 0	Euler's method $h = 0.025$					
13. a)	Most graduate schools of business require applicants for admission the Graduate Management Admission Council's GMAT examples scores on the GMAT are roughly normally distributed with a mean and a standard deviation of 112. What is the probability of an inscoring above 500 on the GMAT?	mination. an of 527		3	3	1,2,12

b)	A random va	ariable X	has the f	followin	g proba	bility di	stri ¹ outio	1.	4	2	3	1,2,12
	X=xi	0	1	2	3	4	5	6				
	$P(X=x_i)$	С	3 <i>c</i>	5 <i>c</i>	7 <i>c</i>	9c	1.1c	13 <i>c</i>				
	Find c and P	P(0 < X < X)	(4) .									
14. a)	Define Null	hypothesi	s, altern	ative hy	pothesis	s, Type-l	and Typ	e-II error	s. 4	1	4	1,2,12
b)							l, 4 a	3	4	1,2,12		
15. a)	Fit a second	order pol	ynomial	to the f	ollowin	g data			4	2	5	1,2,12
	X	0	0.5	1.0	1.5	2.0	2.5					-3-3
	у	0	0.25	1.0	2.25	4.0	6.25					
b)	Find the coe		correlat	tion from	n the fo	llowing	data:		4	3	5	1,2,12
	x 78 y 125	89 97 137 15		59	-	68 5°	7					
16. a)								at takes th	e 4	3	1	1,2,12
	Use Lagrange's formula, to find the quadratic polynomial that takes the values									5	1	1,2,12
		0 1	3									
b)		0 1	0		C			210				
b)	Find by Run places from	$\frac{dy}{dy} = x^2 y$	method, – 1 with	the value $v(0) = \frac{1}{2}$	ues of y	at $x =$	0.1 to fo	ur decima	1 4	3	2	1,2,12
1.7					- 1.							
17.	Answer any											
a)	Explain the different types of Probability Distribution Functions? How to find expectation and variance of each PDF?							0 4	2	3	1.2,12	
b)	Two random variable.	samples	of sizes	7 and	6 gave	the follo	wing va	lues of the	e 4	3	4	1,2,12
	Sample 1: 28	30	32	33	33 2	9 34						
	Sample 2: 29 30 30 24 27 29											
	Test the difference of the estimates of the population variances at 5% level of significance.							1				
c)			ne v≕ a±	hy neina	r below	data				2	-	1010
-)	Fit a simple straight line y= a+bx using below data.						4	2	5	1,2,12		
	x 1	1 2		3	4	5	6	7	1			
	у 0.	.5 2.	5 7	2.0	4.0	3.5	6.0	5.5				

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
i)	Blooms Taxonomy Level – 2	30%
ii)	Blooms Taxonomy Level – 3 & 4	50%